Skip to content

Optional pandas integration

Extension methods for pandas.Series and pandas.DataFrame.

Pandas is an optional dependency, and can be installed using pip install lmo[pandas].

Examples:

Univariate summary statistics:

>>> df = pd.DataFrame({"a": [1, 2, 2, 3, 4], "b": [3, 4, 4, 4, 4]})
>>> df.l_stats()
          a    b
r
1  2.400000  3.8
2  0.700000  0.2
3  0.142857 -1.0
4  0.285714  1.0
>>> df.aggregate(["mean", "std", "skew", "kurt"])
             a         b
mean  2.400000  3.800000
std   1.140175  0.447214
skew  0.404796 -2.236068
kurt -0.177515  5.000000

Comparison of L-correlation, and Pearson correlation matrices:

>>> df = pd.DataFrame({"dogs": [0.2, 0.0, 0.5, 0.4], "cats": [0.3, 0.2, 0.0, 0.1]})
>>> df.l_corr()
      dogs      cats
dogs   1.0 -0.764706
cats  -0.8  1.000000
>>> df.corr()
          dogs      cats
dogs  1.000000 -0.756889
cats -0.756889  1.000000

lmo.contrib.pandas.Series

Extension methods for pandas.Series.

This class is not meant to be used directly. These methods are curried and registered as series accessors.

l_moment(r, /, trim=0, **kwargs)

See lmo.l_moment.

Returns:

Name Type Description
out float | Series[float]

A scalar, or a pd.Series[float], indexed by r.

l_ratio(r, k, /, trim=0, **kwargs)

See lmo.l_ratio.

Returns:

Name Type Description
out float | Series[float]

A scalar, or pd.Series[float], with a MultiIndex of r and k.

l_stats(trim=0, num=4, **kwargs)

See lmo.l_stats.

Returns:

Name Type Description
out Series[float]

A pd.Series[float] with index r = 1, ..., num.

l_loc(trim=0, **kwargs)

See lmo.l_loc.

Returns:

Name Type Description
out float

A scalar.

l_scale(trim=0, **kwargs)

See lmo.l_scale.

Returns:

Name Type Description
out float

A scalar.

l_variation(trim=0, **kwargs)

See lmo.l_variation.

Returns:

Name Type Description
out float

A scalar.

l_skew(trim=0, **kwargs)

See lmo.l_skew.

Returns:

Name Type Description
out float

A scalar.

l_kurtosis(trim=0, **kwargs)

See lmo.l_kurtosis.

Returns:

Name Type Description
out float

A scalar.